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Multi-Scale Modeling of AtriaHectrophysiology

Atrial Fibrosis

A Arrhythmogenic (associated
with AF)

A Slows celto-cell conduction

A Altersionicproperties

Highlights

A A combination of machine learning (ML) and
mechanistic simulations of atrial fibrillation (AF)
Induction (SImAF predicts AF recurrencefollowing

monary vein isolation (PVI) with an average

validation sensitivity of 82%, specificity of 89%,

pu

and areaunderthe curve (AUC)of 0.82.

A Inclusionof featuresextractedfrom SimAHeadsto
highly generalizable (excellent validation and
testing results) AF recurrencerisk prediction with
minimal training data.

Overview

Characteristics of PxXAF cohort

Background

A UntreatedAFleadsto stroke and heart failure.?
A PVlleavesonly 78%of patients free from AF12 monthslater.2

A AF recurrenceresults in morbidity, often requiresrepeat ablation
with additionalfibrotic substratemodification®

A It is unknown how to determine, before the PVIprocedure which
patients are likely to experienceAF recurrenceand might benefit
from a more extensive initial ablation strategy targeting pro-
arrhythmicregionsof fibrosis#

A Goal to developa methodologythat combinespersonalizednulti-
scale modeling and machine learning to predict the risk of AF
recurrenceafter PViusingonly pre-proceduralclinicalimages

AF recurrence risk prediction methodology
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No statistically significant differences in clinical characteristics
between patient who did and did not experience AF recurrence.

Results
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AF Recurrence Risk Prediction with ML and Mi8tale Modeling
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Simulationsalone are not sufficient for AF recurrencerisk stratification, but when combined with ML,
they canprovide clinicalexplainability and mechanisticunderpinningto ML classifierpredictions

A TrainingreceiveroperatingcharacteristifROCxurvesfor prediction of AFrecurrenceafter PVIusingthe number of AF
Inducingpacingsites (Pzp.vaps SOlid red line) and number of RDsand MATs(Nzp.uar dashedblue line) achieveAUCsof

0.72and 0.69, respectively
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A combination of ML and multi-scale mechanistic

Testing | _ | _ |
o S | modeling accurately predicts which patients will
0.8} { ; experienceAFrecurrencein aretrospectivecohort
E - of 32 patients.

oer T A If features extracted from SimAFare included,features
04t ! :-' extracted directly from raw clinical images(l) are not

0.2 ll':" . 1+SimAF (AUC=0.65) reqU"'edfOr I'ISka’edICtlon |
B AR L (AUC=0.40) A More training data would be neededto achievestrong
/v [=-SimAF_(AUC=0.73)| generalizability if only features extracted from raw
0 02 04 06 08 1 clinicalimagesare used mechanisticmodelingis key to
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achieving accurate AF recurrencerisk prediction with
minimal training data.

AF Recurrence Rigkrediction with Multi-Scale Modeling Alone
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The proportion ofARinducingpacing sites (& .us and the number of RDs and MATS{;»)
are higherfor patients who experienced AF recurrence than for patients who did not, but this

IS not statistically significant.
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